
9© The Author(s) 2015
M.J. Gray, V.G. Chinchar (eds.), Ranaviruses, 
DOI 10.1007/978-3-319-13755-1_2

      Distribution and Host Range of Ranaviruses 

                           Amanda     L.    J.     Duffus     ,     Thomas     B.     Waltzek     ,     Anke     C.     Stöhr     , 
    Matthew     C.     Allender     ,     Michael     Gotesman     ,     Richard     J.     Whittington     , 
    Paul     Hick     ,     Megan     K.     Hines     , and     Rachel     E.     Marschang    

1            Introduction 

 The genus  Ranavirus  is a group of globally emerging pathogens infecting fi sh, 
amphibians, and reptiles, impacting both captive and wild animals. Ranaviruses are 
pathogens capable of infecting multiple species at a site (e.g., Mao et al.  1999a ; 
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Duffus et al.  2008 ), and can be transmitted between taxonomic classes of ectothermic 
vertebrates (e.g., Brenes et al.  2014a ,  b ; Brunner et al.  2015 ). Ranaviruses are known 
to infect at least 175 species across 52 families of ectothermic vertebrates, and are 
found on all continents but Antarctica (Table  1 ; Figs.  1  and  2 ). Most of what is known 

  Table 1    The taxonomic 
distribution of ranavirus cases 
among amphibian, fi sh, and 
reptilian hosts  

 Family  No. species affected 

 Amphibians  Alytidae  1 
 Ambystomatidae  8 a  
 Bufonidae  8 
 Centrolenidae  1 
 Craugastoridae  3 
 Cryptobranchidae  2 
 Dendrobatidae  5 
 Hylidae  15 
 Hynobiidae  1 
 Leptodactylidae  2 a  
 Megophryidae  1 
 Myobatrachidae  2 
 Pipidae  1 
 Plethodontidae  21 
 Ranidae  22 a  
 Rhacophoridae  1 
 Salamandridae  8 
 Scaphiopodidae  1 

 Fish  Acipenseridae  3 
 Anguillidae  1 
 Centrarchidae  9 
 Channidae  1 
 Catostomidae  1 
 Cyprinidae  2 
 Eleotridae  1 
 Esocidae  2 
 Gadidae  1 
 Gasterosteidae  1 
 Ictaluridae  2 
 Labridae  1 
 Latidae  1 
 Lutjanidae  1 
 Moronidae  3 
 Percidae  2 
 Poeciliidae  1 
 Salmonidae  1 
 Sciaenidae  1 
 Scophthalmidae  1 
 Serranidae  4 
 Siluridae  1 

(continued)
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 Family  No. species affected 

 Reptiles  Agamidae  2 
 Anguidae  1 
 Boidae  1 
 Dactyloidae  2 
 Emydidae  4 
 Gekkonidae  1 
 Iguanidae  1 
 Lacertidae  2 
 Pythonidae  4 
 Testudinidae  8 
 Trionychidae  1 
 Varanidae  1 

   a Some reports only include the genera  

Table 1 (continued)

  Fig. 1    Global distribution of ranavirus cases       

about the epidemiology, geography, and host range of ranaviruses comes from inves-
tigations of obvious die-offs, sporadic surveillance efforts in small numbers of popu-
lations at one or two time points, and a few larger-scale surveillance efforts focused 
on a handful of species of economic importance or conservation interest (Grizzle and 
Brunner  2003 ; Gray et al.  2009b ; Whittington et al.  2010 ; Miller et al.  2011 ; Gray 
et al.  2015 ). Because gross signs of infection may not be displayed, many host spe-
cies are cryptic and diffi cult to detect, the lack of awareness of ranaviruses as signifi -
cant pathogens, and occasional misdiagnosis, the known geographic distribution and 
host range of ranaviruses are likely underestimated.
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    Ranaviruses are classifi ed as emerging pathogens, because their geographic distri-
bution and host range appear to be expanding (Daszak et al.  1999 ). It is becoming 
evident that ranaviruses are frequently moved in the regional and international trade 
of animals. For example, barred tiger salamander ( Ambystoma mavortium ) larvae are 
sold as fi shing bait in the southwestern USA, and as many as 100 % have been shown 
to be infected with the ranavirus,  Ambystoma tigrinum virus  (ATV; Picco and Collins 
 2008 ; Brunner et al.  2015 ). Amphibian ranaviruses have been found in animals that 
are traded over international borders for a variety of reasons, including human con-
sumption and the pet trade (Schloegel et al.  2009 ; Kolby et al.  2014 ). Schloegel et al. 
( 2009 ) found that 8.5 % of amphibians imported into the USA at three major port 

  Fig. 2    Ranaviruses are known to cause disease in three ectothermic vertebrate classes. ( a ) Dead 
adult edible frog ( Rana esculenta ) in the Netherlands (credit = Jeiger Herder), ( b ) morbid plains 
spadefoot ( Spea bombifrons ) in the USA (credit = Drew Davis), ( c ) infected Amur sturgeon 
( Acipenser schrenckii ) in China (credit = Yi Geng), ( d ) morbid juvenile Chinese giant salamander 
( Andrias davidianus ) in China (credit = Lingbing Zeng), ( e ) dead eastern box turtle ( Terrapene caro-
lina carolina ) in the USA (credit = Matthew Allender), and ( f ) infected green striped tree dragon 
( Japalura splendida ) with ranavirus-associated dermatitis in Germany (credit = Helge Behncke)       
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cities were infected with ranavirus. Similarly, Kolby et al. ( 2014 ) found over 50 % of 
amphibians exported via Hong Kong International Airport were infected with ranavi-
rus. Reptiles infected with ranaviruses also have been discovered in internationally 
traded animals (Hyatt et al.  2002 ; Stöhr et al.  2013b ,  2015 ). Finally, internationally 
traded ornamental fi shes have been shown to be infected with ranaviruses (Hedrick 
and McDowell  1995 ). 

 While the outcome of infection varies among hosts and strains of ranaviruses, it 
is clear that ranaviruses have the potential to cause population declines and extinc-
tions (Teacher et al.  2010 ; Price et al.  2014 ; Earl and Gray  2014 ). They may present 
a signifi cant threat to host species that are geographically isolated or exist at low 
abundance (Heard et al.  2013 ; Price et al.  2014 ; Earl and Gray  2014 ). Thus, highly 
susceptible host species that are rare may be at greatest risk (Earl and Gray  2014 ). 
However, common species also can be affected. For example, populations of the 
common frog ( Rana temporaria ) have declined on average 80 % in the UK where 
ranavirus die-offs have reoccurred (Teacher et al.  2010 ). It is therefore important to 
understand the geographic extent, host range, and phylogenetic relationships of 
these emerging pathogens (Jancovich et al.  2015 ).  

2     Ranaviruses Infecting Amphibians 

 The fi rst ranaviruses were isolated from northern leopard frogs ( Lithobates pipiens ) 
from the Midwest USA in the 1960s (Granoff et al.  1965 ; Clark et al.  1968 ). One of 
these viruses, isolated from a frog with adenocarcinoma, was designated  Frog virus 
3  (FV3; Granoff et al.  1965 ), and became the type species of the genus,  Ranavirus . 
While many aspects of FV3 virology were well characterized in the following 
decades (Chinchar  2002 ), there were few reports of ranaviral disease associated 
with amphibians so the pathogen received little attention. A second species of 
 Ranavirus ,  Bohle iridovirus  (BIV), was not isolated from amphibians until the early 
1990s. This virus was detected in captive animals in Australia (Speare and Smith 
 1992 ). About the same time, epizootic die-offs were being recorded in the south-
western USA and the UK (Collins et al.  1988 ; Cunningham et al.  1993 ), but it was 
not until the mid-1990s that the etiology of the disease was determined to be a rana-
virus (Drury et al.  1995 ; Cunningham et al.  1996 ; Jancovich et al.  1997 , Fig.  2 ). 
Reports of ranavirus-related mortality and infection in amphibians have grown 
exponentially, with over 90 % of reports occurring after 2010. Although greater 
awareness and more surveillance for the pathogen have impacted this trend, the 
increase in ranavirus cases is likely not solely a sampling artifact. We now realize 
that the distribution of amphibian ranaviruses is global, and die-offs are occurring 
in places where these viruses were previously undetected. 

 Ranaviruses have a global distribution (Fig.  1 ; Table  2 ), and have been identifi ed as 
threats to amphibian populations (e.g., Duffus and Cunningham  2010 ; Teacher et al. 
 2010 ; Miller et al.  2011 ). Amphibian ranaviruses have been reported in at least 105 spe-
cies of amphibians in 18 families in 25 countries (Fig.  3 ; Table  2 ). These numbers are 
likely underestimated because many amphibians are cryptic in nature or rare, gross signs 
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  Fig. 3    Distribution of ranavirus cases involving amphibians       

  Fig. 4    Distribution of ranavirus cases involving fi sh       
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  Fig. 5    Distribution of ranavirus cases involving reptiles       

of ranavirus infection are not always apparent and can be confused with other factors, and 
mortality events are not easily observed due to their rapid progression and the fast decom-
position of dead hosts (Brunner et al.  2015 ; Miller et al.  2015 ). It is perhaps not surprising 
that caecilians, which are fossorial and as a group poorly studied, are the only amphibian 
family with no reports of ranavirus infection. To our knowledge, no one has tested the 
susceptibility of caecilians to ranavirus or performed surveillance in wild populations.     

    There are three recognized species of ranaviruses that are known to infect 
amphibians: FV3, ATV, and BIV. Also, there are several other ranaviruses that have 
been isolated from amphibians (e.g., common midwife toad virus, CMTV; Balseiro 
et al.  2009 ), but are not currently recognized as ranavirus species. As discussed in 
Jancovich et al. ( 2015 ), declaring a given isolate as a unique viral species is com-
plex, and compounded by the fact that there is considerable sequence conservation, 
often greater than 95 % at the amino acid level among many ranavirus isolates. A 
challenge for the future is identifying genetic sequences that allow for unique char-
acterization of ranaviruses in an evolutionary context. Below, we discuss what is 
known about some of the ranaviruses that infect amphibians. 

2.1      Frog Virus 3  

 Since its initial isolation from the leopard frog, cases of FV3 and FV3-like infec-
tions and disease have been confi rmed in a growing number of amphibian species 
(as well as fi sh and reptiles, Sects.  3  and  4 ). Infected animals include some that were 
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visibly diseased or dying, and several cases from apparently healthy individuals. 
Outbreaks of FV3 and FV3-like viruses in amphibians have occurred across large 
sections of North America and have been found in many different species of anurans 
and urodeles in eastern North America. In both the USA and Canada, the number of 
infections caused by FV3 or FV3-like viruses is unknown, because many research-
ers do not report the strain of ranavirus detected in their studies. There have been no 
reports of ranavirus infections in Mexico, likely due to a lack of investigation. In 
Central America, an FV3-like ranavirus has been detected in a minimum of ten 
amphibian species. Specifi cally, in Costa Rica, at least eight species are known to 
have been infected with an FV3-like ranavirus (   Whitfi eld et al.  2013 ), and in 
Nicaragua, an FV3-like ranavirus has been detected in at least two species (Stark 
et al.  2014 ). Cases of FV3 infection and disease in South America have been pri-
marily associated with American bullfrog ( L. catesbeianus ) farms (Mazzoni et al. 
 2009 ), but a single case of infection in a wild amphibian population of Patagonia 
frogs ( Atelognathus patagonicus ) was reported (Fox et al.  2006 ). 

 In Europe, the fi rst outbreaks of FV3-like viruses occurred in the southeastern 
UK in common frogs (Cunningham et al.  1993 ,  1996 ; Drury et al.  1995 ). The emer-
gence of these viruses in common frogs was followed quickly by their emergence in 
common toads ( Bufo bufo ; Hyatt et al.  2000 ; Cunningham et al.  2007 ). Since then, 
FV3-like infections have been documented in common newts ( Lissotriton vulgaris ) 
and common midwife toads ( Alytes obstetricans ; Duffus et al.  2014 ). FV3-like 
viruses have also been detected in amphibians in continental Europe (e.g., Ariel 
et al.  2009 ; Stöhr et al.  2013c ). In total, FV3-like ranaviruses have been documented 
in a minimum of fi ve amphibian species in Europe. 

 In Asia, there have been several reports of FV3-like viruses in both wild and cap-
tive populations of amphibians. In China, an FV3-like virus was found across 
Heilongjiang Province in 5.7 % of adult and 42.5 % of larval  R. dybowskii  surveyed 
(Xu et al.  2010 ). In Japan, an FV3-like ranavirus was responsible for a mass mortality 
of American bullfrog tadpoles, an introduced species (Une et al.  2009a ). In this case, 
adult bullfrogs and fi sh ( Gnathopogon  spp.) that were present in the pond did not die 
or appear moribund, but ranavirus was documented in the livers of the fi sh (Une et al. 
 2009b ), suggesting interclass transmission. The single case of ranavirus infection in 
Africa reported by Docherty-Bone et al. ( 2013 ) is also likely to be an FV3-like virus. 
The primers used were those developed for the major capsid protein of FV3, but the 
PCR products were of poor quality and could not be sequenced (Docherty-Bone et al. 
 2013 ). In general, surveillance data for ranaviruses in Asia and Africa have been 
slower to accumulate than for North America or Europe, which are essential to 
understanding the distribution, host range, and threat of ranaviruses. 

 As mentioned, FV3 and FV3-like ranaviruses have affected many aquaculture 
facilities. In Japan, a ranavirus with 99 % homology to the major capsid protein of 
FV3 was isolated from a mass mortality event in cultured Japanese clouded sala-
manders ( Hynobius nebulosus , Une et al.  2009a ). In the Americas, FV3-like viruses 
have also been documented in association with mass mortality events in aquaculture 
facilities. In the USA, FV3-like viruses have been responsible for mass mortalities 
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of tadpoles and recently metamorphosed American bullfrogs in culture facilities 
(Majji et al.  2006 ; Miller et al.  2007 ). In Brazil, FV3-like ranaviruses have been 
responsible for mass mortality events at several aquaculture facilities that rear 
American bullfrogs (Mazzoni et al.  2009 ). There is some evidence that suggests that 
the FV3-like viruses that are present in aquaculture facilities are more virulent than 
those found in natural populations (Majji et al.  2006 ; Hoverman et al.  2010 ,  2011 ).  

2.2      Ambystoma Tigrinum Virus  

 Ambystoma tigrinum virus was fi rst described in larval Sonora tiger salamanders 
( Ambystoma tigrinum stebbinsi ) collected from the San Rafael Valley in Arizona, 
USA in 1995 (Jancovich et al.  1997 ). This virus was isolated from a population that 
had both apparently healthy and visibly diseased salamander larvae (Jancovich 
et al.  1997 ). The virus that was later isolated was successfully transmitted to healthy 
individuals via the water, as well as through the feeding of body parts of infected 
animals to healthy individuals in the laboratory (Jancovich et al.  1997 ). After fulfi ll-
ing Koch’s Postulates, it was determined that ATV was the causative agent of the 
disease found in the tiger salamander larvae and the likely cause of recurrent epizo-
otics fi rst described in 1985 (Collins et al.  1988 ). 

 Ambystoma tigrinum virus in the wild appears to be restricted to western North 
America (Jancovich et al.  2005 ; Ridenhour and Storfer  2008 ). Phylogeographic 
studies of ATV strains suggest local range expansion and long-distance colonization 
events, which may be attributed to anthropogenic spread (Jancovich et al.  2005 ). 
ATV is found in tiger salamander larvae sold commercially as fi sh bait (Picco and 
Collins  2008 ), providing an anthropogenic explanation for range expansion. 

 Because of the potential for introduction, ATV may be a threat to naïve urodeles 
of conservation concern. In the lab, the endangered California tiger salamander 
( Ambystoma californiense ) is susceptible to ATV and experienced mortality associ-
ated with infection (Picco et al.  2007 ). There have been no reports of ATV infec-
tions or associated mortality in wild California tiger salamanders, probably due in 
part to the ban on importation of non-native Ambystomatidae into the state. 

 Patterns of ATV infection are more similar among ponds in the same year, rather 
than between years (Greer et al.  2009 ). In natural populations of tiger salamanders 
located on the Kaibab Plateau in the Northern Kaibab National Forest in Arizona, 
outbreaks of ATV appear to be synchronous (Greer et al.  2009 ). Interestingly, 
despite four years of observation, no visible signs of disease were seen, even in 
cases where the infection rate in the pond was greater than 50 % (Greer et al.  2009 ). 
It is thought that the lack of observed morbidity and mortality in these populations 
is due to coevolution between ATV and the host (Greer et al.  2009 ). This may be the 
case as there is evidence of local adaptation in ATV strains isolated from the west-
ern USA (Ridenhour and Storfer  2008 ).  
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2.3       Bohle Iridovirus  

 Bohle iridovirus was fi rst described in the early 1990s and was isolated from recently 
metamorphosed ornate burrowing frogs ( Limnodynastes ornatus ) in Australia that 
had been raised in captivity and suddenly died (Speare and Smith  1992 ). Using 
sequences from the major capsid protein, BIV was determined to be most closely 
related to  Epizootic hematopoietic necrosis virus  (EHNV), a fi sh ranavirus that had 
also been isolated in Australia (Hyatt et al.  2000 ). Subsequent experimentation 
showed that BIV was pathogenic in additional species of Australian anurans and was 
involved in mortality events in captive and wild settings (Cullen et al.  1995 ; Cullen 
and Owens  2002 ). 

 Until recently, BIV and BIV-like viruses were known only from Australian 
anurans. Then, in 2010, a BIV-like virus was isolated from boreal toads ( Anaxyrus 
boreas boreas ) held in an Iowa, USA aquarium that experienced a mass mortality. 
The virus, tentatively designated Zoo Ranavirus (ZRV), was found to have high 
sequence homology with BIV (Cheng et al.  2014 ). These toads had been housed 
with multiple species, some of which were collected in the wild from Southeast 
Asia, suggesting a potential route of introduction. Other species that were infected 
with ZRV but did not experience mortality in the outbreak included a Malayan 
horned frog ( Megophrys nasuta ) and a bumblebee toad ( Melanophryniscus stelz-
neri , Cheng et al.  2014 ). At present, it is unknown whether ZRV represents a novel 
North American isolate of BIV, or the transmission of BIV from another captive 
animal.  

2.4      Other Amphibian Ranaviruses 

 Common midwife toad virus (CMTV) was fi rst isolated from common midwife 
toad tadpoles experiencing a mass mortality event in 2007 in northern Spain 
(Balseiro et al.  2009 ). A second mass mortality event during 2008 in the same 
region of Spain involving CMTV affected common midwife toad tadpoles and juve-
nile alpine newts ( Mesotriton alpestris ; Balseiro et al.  2010 ). A long-term study in 
Spain reported six amphibian species experiencing die-offs due to CMTV at several 
sites, with population declines documented in three species (Price et al.  2014 ). 
CMTV infections have also been found in invasive populations of American bull-
frogs in Belgium (Sharifi an-Fard et al.  2011 ), and in both captive and wild animals 
in the Netherlands (Kik et al.  2011 ,  2012 ). CMTV appears to be the most common 
ranavirus in continental Europe, but has not been found elsewhere. This virus 
appears to be evolutionarily unique from other ranaviruses (Mavian et al.  2012 ); 
thus, species designation may be warranted. 

 Another possibly unique ranavirus was isolated recently from the endangered 
Chinese giant salamander ( Andrias davidianus ; Geng et al.  2011 ; Chen et al.  2013 ; 
Ma et al.  2014 ). The virus was isolated from captive populations, and in all cases 
resulted in high morbidity and mortality (Geng et al.  2011 ; Chen et al.  2013 ; 
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Ma et al.  2014 ). Phylogenetic analyses have shown that it is most closely related to 
CMTV (Chen et al.  2013 ). Dr. Lingbing Zeng has been working with several 
Chinese giant salamander farms, and has documented the virus across 11 Chinese 
provinces (L. Zeng and J. Ma, Yangtze River Fisheries Institute, unpublished data). 
The emergence of this ranavirus in China is a serious conservation threat 
(Cunningham et al.  2015 ). 

 There are several other ranaviruses that have been isolated from amphibians and 
named, but are not considered unique species.  Rana grylio  virus (RGV) was iso-
lated in the mid-1990s in China (Zhang et al.  1996 ), and appears to be closely 
related to FV3 (Lei et al.  2012 ). The tiger frog virus (TFV) was isolated in 2000 
from Chinese amphibians involved in a mass mortality event at a ranaculture facility 
(Weng et al.  2002 ). Both of these ranaviruses may be a threat to aquaculture facili-
ties in Asia.   

3     Ranaviruses Infecting Fish 

 Ranaviruses can cause severe systemic diseases in fi nfi sh in both marine and fresh-
water environments (Whittington et al.  2010 ). EHNV was the fi rst ranavirus associ-
ated with fi sh die-offs, and was isolated in 1985 in Australia (Langdon et al.  1986b ). 
A genetically distinct, but closely related ranavirus,  European catfi sh virus  (ECV), 
was detected soon after in Europe (Ahne et al.  1989 ). The  Santee - Cooper ranavirus  
(SCRV), known informally as largemouth bass virus (LMBV) and currently 
 classifi ed by the International Committee on the Taxonomy of Viruses (ICTV) as a 
ranavirus, was associated with wild fi sh epizootics in the USA (Plumb et al.  1996 ). 
Although typically associated with morbidity in amphibians and reptiles, FV3 also 
has been isolated from a moribund threespine stickleback ( Gasterosteus aculeatus ) 
during a sympatric epizootic in the northern red-legged frog ( Rana aurora ; Mao 
et al.  1999a ). There are three species of ranavirus recognized by the ICTV that pri-
marily infect fi sh: EHNV is not known to occur naturally in any country except 
Australia; ECV appears to be confi ned to Europe; and SCRV has primarily been 
detected in North American fi shes. 

 While both EHNV and ECV have impacted aquaculture (Whittington et al.  2010 ), 
BIV appears to be restricted to a single outbreak in hatchery-reared Nile tilapia fry 
( Oreochromis niloticus ) in Australia (Ariel and Owens  1997 ). Recently, SCRV and 
FV3 have been repeatedly detected among hatchery-reared freshwater fi shes in North 
America and Asia (Woodland et al.  2002b ; Prasankok et al.  2005 ; Deng et al.  2011 ; 
George et al.  2014 ; Chinchar and Waltzek  2014 ; Waltzek et al.  2014 ). Two genetically 
distinct but related ranaviruses, Singapore grouper iridovirus (SGIV) and grouper 
iridovirus (GIV), have negatively impacted grouper mariculture in Asia since the 
1990s (Chua et al.  1994 ; Murali et al.  2002 ; Qin et al.  2003 ). The reasons for the 
emergence of ranaviruses as pathogens of fi nfi sh within both natural and managed 
populations are unknown. However, the repeated detection of the same fi nfi sh ranavi-
ruses (e.g., SCRV) around the globe suggests that the international movement of live 

Distribution and Host Range of Ranaviruses



28

animals and their products likely plays an important role in the occurrence of these 
epizootics (Hedrick and McDowell  1995 ; Plumb and Zilberg  1999a ; Grant et al. 
 2005 ; Schramm and Davis  2006 ; Deng et al.  2011 ; George et al.  2014 ). 

3.1      Epizootic Haematopoietic Necrosis Virus  

    The fi rst ranavirus to be associated with systemic infection and mass mortality in 
any vertebrate species was EHNV. It was identifi ed as the cause of epizootic mortal-
ity of redfi n perch ( Perca fl uviatilis ) and rainbow trout ( Oncorhynchus mykiss ) in 
Australia in 1985 (Langdon et al.  1986b ,  1988 ; Langdon and Humphrey  1987 ). The 
source of the outbreak was not determined. A survey to detect viral infections of 
salmonids conducted in Australia between 1981 and 1984 did not identify any 
viruses (Langdon et al.  1986a ), so EHNV may not have been present in trout prior 
to these fi rst mortality events. Although redfi n perch populations were not surveyed, 
there was no record of prior mass mortality (Whittington et al.  1996 ). To date, there 
have been no other known cases of EHNV mortality in the wild other than redfi n 
perch, despite the fact that at least 14 additional species are known to be susceptible 
to this ranavirus according to experimental challenges (Whittington et al.  2010 ; 
Becker et al.  2013 ). Perhaps the diffi culty of observing free-living fi nfi sh species 
combined with unreliable reporting of clinical disease is responsible for the current 
lack of EHNV detection in Australia. 

 The impact of EHNV on aquaculture has been limited to farmed rainbow trout in 
southeastern Australia; salmonid populations of Tasmania and western Australia 
remain free of EHNV infection. EHNV infection is endemic in wild redfi n perch 
populations throughout southeastern Australia, excluding Tasmania. Redfi n perch 
are highly susceptible to EHNV, while rainbow trout are relatively resistant 
(Whittington and Reddacliff  1995 ). In affected trout farms, EHNV tends to occur in 
only a small proportion of fi sh (Whittington et al.  1994 ,  1999 ), with total mortality 
generally ≤4 % across all age classes. While few fi sh become infected, the mortality 
rate of infected individuals appears to be high (Whittington et al.  1994 ,  1999 ). In 
contrast, EHNV causes severe disease in redfi n perch, affecting high proportions of 
populations of fi ngerlings and juveniles in endemic areas, and also naïve adults that 
enter new areas (Langdon et al.  1986b ; Langdon and Humphrey  1987 ; Whittington 
et al.  1996 ). Anecdotal evidence suggests that redfi n perch populations exposed to 
EHNV can recover over a few years. There is some evidence based on virus isola-
tion and serology that both redfi n perch and rainbow trout are capable of living with 
subclinical infections of EHNV, thus possibly function as reservoirs for the patho-
gen (Whittington et al.  2010 ). 

 In redfi n perch, there has been progressive spread of EHNV into river systems, 
possibly due to natural fi sh migration, fi sh releases, and avifauna (Whittington et al. 
 1996 ). Waterborne infection and ingestion of infected fi sh are transmission routes of 
EHNV between susceptible hosts within a population, but longer distance spread 
is likely a result of human activity, particularly by movement of infected trout 
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fi ngerlings in aquaculture (Langdon et al.  1988 ; Whittington et al.  1994 ,  1999 ). 
Annual outbreaks on trout farms may be due to persistence of the virus in the local 
environment or reinfection from wild redfi n perch. 

 Natural epizootics in redfi n perch occur most often in summer, and there is evi-
dence of a positive relationship between EHNV pathogenicity and water tempera-
ture. Redfi n perch are not susceptible to EHNV below 10 °C, and incubation periods 
for the virus are shorter at higher temperatures (Whittington and Reddacliff  1995 ). 
In rainbow trout, EHNV outbreaks have occurred between 11 and 20 °C (Whittington 
and Reddacliff  1995 ; Whittington et al.  1994 ,  1999 ). Temperature-dependent patho-
genicity may be related to viral replication rates (Ariel et al.  2009 ). 

 The fi rst transmission studies with EHNV were conducted by Langdon ( 1989 ) 
who identifi ed a wide range of susceptible hosts, a factor that contributed to the list-
ing of EHNV by the International Offi ce of Epizootics (OIE). Although there are 
recognized defi ciencies in laboratory challenge models to determine the susceptibil-
ity of host fi sh to virus isolates under natural conditions, a potential increase in the 
host range of EHNV infections has been predicted. In three separate challenge stud-
ies, black bullhead ( Ameiurus melas ), pike ( Esox Lucius ), and pike-perch ( Sander 
lucioperca ) experienced signifi cant mortality following bath exposure to EHNV 
(Bang-Jensen et al.  2009 ,  2011a ; Gobbo et al.  2010 ). On the other hand, goldfi sh 
( Carassius auratus ), common carp ( Cyprinus carpio ), and European sheatfi sh 
( Silurus glanis ) did not experience signifi cant mortality following bath exposure to 
EHNV (Bang-Jensen et al.  2011b ; Leimbach et al.  2014 ). Like other ranaviruses, the 
 outcome of EHNV infection may depend on various viral, host, and environmental 
factors including: virus concentration and route of delivery, viral strain, host genetics, 
host density and age, and water temperature (Brunner et al.  2015 ). For example, 
lower mortality was observed when European redfi n perch stocks were challenged 
with EHNV, but it was these individuals that caused transmission of the pathogen to 
and extensive mortality in Australian redfi n perch that were cohoused with them 
(Ariel and Bang-Jensen  2009 ).  

3.2      European Catfi sh Virus  

 European catfi sh virus is the most important ranavirus that causes disease of fi sh in 
Europe. It was referred to as European sheatfi sh virus (ESV) prior to its formal clas-
sifi cation. This pathogen has triggered epizootics in cultivated sheatfi sh in Germany 
(Ahne et al.  1989 ,  1991 ) and wild black bullheads in France and Italy (Pozet et al. 
 1992 ; Bovo et al.  1993  ;  Bigarré et al.  2008 ). Evidently, the virus is endemic in some 
locations (e.g., Lake le Bourget and Lake Apremont in France; Bigarré et al.  2008 ). 
In Italy, the disease occurs in both farmed and wild black bullhead and in farmed 
brown bullhead ( A. nebulosus ), and affects production of these species (Ariel et al. 
 2010 ). An ECV outbreak was detected in brown bullheads in Hungary in 2008 
(Juhász et al.  2013 ). 
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 The host range, geographic distribution, and diversity of ECV strains in Europe 
is incompletely understood. The virus is readily transmitted to catfi sh via a range of 
challenge methods including bath exposure, cohabitation, and intramuscular injec-
tion (Ahne et al.  1990 ; Pozet et al.  1992 ), and results in only a small proportion of 
exposed catfi sh surviving (Pozet et al.  1992 ). Interestingly, Gobbo et al. ( 2010 ) 
found different patterns of susceptibility based on closely related ranavirus strains, 
as black bullheads were susceptible to ECV, but not to the ESV isolate used in this 
study. More recent experiments have demonstrated variable pathogenicity of differ-
ent isolates of ECV, and a strong impact of water temperature on disease outcome, 
with mortality varying between 8 and 10 % among challenged sheatfi sh (Leimbach 
et al.  2014 ). In three separate experimental challenge studies, black bullhead, pike, 
and sheatfi sh experienced signifi cant mortality following bath exposure to strains of 
ECV (Bang-Jensen et al.  2009 ; Gobbo et al.  2010 ; Leimbach et al.  2014 ). Goldfi sh, 
common carp, and pike-perch did not experience signifi cant mortality following 
bath exposure to ECV strains (Bang-Jensen et al.  2011a ,  b ).  

3.3      Santee-Cooper Ranavirus  

 The discovery of an iridovirus from largemouth bass ( Micropterus salmoides ) was 
reported from a 1995 epizootic that occurred in the Santee-Cooper Reservoir, South 
Carolina, USA (Plumb et al.  1996 ). Accordingly, the authors named the pathogen 
LMBV based on the host. Subsequent genetic analyses confi rmed LMBV to be a 
unique member of the genus  Ranavirus  (Mao et al.  1997 ,  1999b ), and nearly identi-
cal to doctor fi sh virus (DFV) and guppy virus 6 (GV6), which had previously been 
isolated from imported ornamental fi shes originating in Southeast Asia (Hedrick 
and McDowell  1995 ). The designation of LMBV later as SCRV was based on the 
location where the virus was isolated. However, Grizzle et al. ( 2002 ) disputed the 
change in name citing the fact that the LMBV had previously (1991) been isolated 
in largemouth bass from Lake Weir, Florida, USA (Francis-Floyd  1992 ). The afore-
mentioned studies and more recent phylogenetic analyses support LMBV, GV6, and 
DFV as strains of the same species that is formally known by the ICTV as the SCRV 
(Holopainen et al.  2009 ). Importantly, it has been argued based on the genetic 
sequence analyses as well as epidemiological and pathobiological characteristics 
that SCRV may be too divergent to be included within the genus  Ranavirus  (Hyatt 
et al.  2000 ; Whittington et al.  2010 ; Jancovich et al.  2015 ). 

 Epizootics attributable to SCRV have been repeatedly reported among wild popu-
lations of North American largemouth bass (Grizzle and Brunner  2003 ; Plumb and 
Hanson  2011 ). Although SCRV virulence appears variable in natural and experi-
mental settings, typical outbreaks involve adult fi sh observed during summer at the 
surface with buoyancy or equilibrium problems. In general, the factors responsible 
for SCRV epizootics remain unknown, and may be case-specifi c. However, genetic 
background of the largemouth bass population, SCRV exposure history within that 
population, SCRV strain, and environmental factors (e.g., low dissolved oxygen 
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associated with warmer water temperatures) have been argued as potential factors 
contributing to emergence (Grizzle and Brunner  2003 ; Plumb and Hanson  2011 ). 
Experimental infections of SCRV in largemouth bass and striped bass ( Morone sax-
atilis ) revealed a direct correlation between virus titer and mortality by both injec-
tion and immersion; however, striped bass experienced lower overall cumulative 
mortality (Plumb and Zilberg  1999b ; Zilberg et al.  2000 ). Experimental transmission 
of SCRV in largemouth bass via oral administration resulted in infection of the skin 
and internal organs (e.g., swim bladder) without mortality (Woodland et al.  2002a ). 

 In the USA, SCRV has also been isolated from a wide range of wild asymptom-
atic freshwater fi shes (6 families and 17 species) in 31 states ranging as far south as 
Florida to as far west as Arizona, and to the northern states of Wisconsin, Michigan, 
New York, Vermont, and Delaware (   Goldberg  2002 ; Woodland et al.  2002b ; 
Groocock et al.  2008 ; USFWS  2011 ; Iwanowicz et al.  2013 ; Table  3 ). Most recently, 
a SCRV strain was isolated from the exotic Northern snakehead ( Channa argus ) 
recently introduced into the Chesapeake Bay watershed (Iwanowicz et al.  2013 ). 
Asian strains of SCRV (DFV/GV6) were shown experimentally to infect and induce 
low mortality in rainbow trout and chinook salmon ( Oncorhynchus tshawytscha ), 
but not channel catfi sh ( Ictalurus punctatus ; Hedrick and McDowell  1995 ). A SCRV 
strain isolated from moribund hatchery-reared largemouth bass reared in China was 
found to be highly lethal to largemouth bass (Deng et al.  2011 ); however, little or no 
mortality was observed in seven other species tested including koi ( Cyprinus carpio ; 
Table  3 ). In contrast, a recent mass mortality event among farmed koi in southern 
India was attributed to a strain of SCRV (George et al.  2014 ), although the authors 
did not provide a detailed description of viral-induced pathology. 

 It seems likely that SCRV has been disseminated across the USA and globally 
through the unrestricted movement of live fi sh and their products associated with 
the ornamental (Hedrick and McDowell  1995 ; Deng et al.  2011 ; George et al.  2014 ), 
food (Plumb and Zilberg  1999a ), and angling industries (Grant et al.  2005 ; Schramm 
and Davis  2006 ). For example, in the USA, largemouth bass angling tournaments 
may contribute to the spread of SCRV to naïve fi sh by placing infected and unin-
fected fi sh in close proximity; however, the stress associated with angling has not 
been shown to greatly increase SCRV-associated mortality (Grant et al.  2005 ; 
Schramm and Davis  2006 ). Given that SCRV remains infectious in frozen tissues, 
the import/export of frozen fi sh tissues may represent another mechanism by which 
the virus can be spread (Plumb and Zilberg  1999a ). Future concerted surveillance 
efforts are needed to confi rm the risk that the aforementioned industries play in the 
global dissemination of SCRV.  

3.4      Frog Virus 3  

 Although only a single case of FV3 infection has been reported in wild fi sh (Mao 
et al.  1999a ), a number of cases of piscine infection with FV3 have been reported 
among captive/cultured fi sh. In the former, an FV3-like virus was recovered from a 
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single moribund threespine stickleback that was coinfected with myxozoan parasites, 
obscuring the role of the virus in the disease (Mao et al.  1999a ). However, FV3-like 
ranaviruses have been isolated from captive fi shes on several occasions. A ranavirus 
displaying 98–99 % nucleotide identity to FV3 over a portion of the major capsid 
gene has been reported among cultured marbled sleeper goby ( Oxyeleotris mar-
moratus ) in Thailand (Prasankok et al.  2005 ). Furthermore, FV3 outbreaks have 
impeded efforts to restore populations of the critically endangered pallid sturgeon 
( Scaphirhynchus albus ) in the Missouri River Basin of the USA (Waltzek et al.  2014 ). 
High-mortality epizootics were reported among young-of-the-year pallid sturgeon in 
2001, 2009, and 2013 at the Blind Pony Hatchery in Sweet Springs, Missouri, USA 
(Chinchar and Waltzek  2014 ; Waltzek et al.  2014 ). Experimental transmission of the 
2009 isolate recreated the same high-mortality disease in naïve juvenile pallid stur-
geon following bath exposure (Waltzek et al.  2014 ). Furthermore, an FV3 strain iso-
lated from moribund hatchery-reared Russian sturgeon ( Acipenser gueldenstaedtii ) 
was found to be lethal to both Russian and lake ( A. fl uvescens ) sturgeon following 
intraperitoneal injection (Waltzek et al.  2014 ). Finally, an FV3- like ranavirus was 
isolated from juvenile white sturgeon ( A. transmontanus ) on a California, USA, farm 
during an unusual mortality event in 1998 (Waltzek et al.  2014 ). 

 Experimental transmission studies using FV3-like viruses isolated from a diver-
sity of ectothermic vertebrate classes have been shown to infect black bullhead 
( Ameiurus melas ), northern pike, pike-perch, mosquito fi sh ( Gambusia affi nis ), and 
bluegill ( Lepomis macrochirus ), although little or no mortality was observed in 
these species (Gobbo et al.  2010 ; Bang-Jensen et al.  2009 ,  2011a ,  b ; Brenes et al. 
 2014a ). Similarly, recent North American fi sh health surveys resulted in the isola-
tion of FV3 from healthy appearing fathead minnow ( Pimephales promelas ), wall-
eye ( Sander vitreus ), and northern pike (Waltzek et al.  2014 ). Although preliminary, 
these data suggest that imperiled sturgeon may be predisposed to infections with 
FV3-like viruses; whereas, other fi shes may simply act as viral carriers or dead-end 
hosts. Future studies are needed to explore the importance of FV3-like viruses 
across a wider range of wild and captive fi sh species as well as the potential role of 
aquaculture in the global dissemination of these important pathogens.  

3.5      Bohle Iridovirus  

 As indicated above, BIV was fi rst isolated from diseased ornate burrowing frog 
tadpoles ( Limnodynastes ornatus    ) in Australia. Although designated as a distinct 
species by the ICTV, the sequence of the MCP gene is 97.8 % identical to that of 
EHNV, which is endemic in a different part of the continent (Marsh et al.  2002 ). 
As with FV3, laboratory challenge studies demonstrated that BIV is also pathogenic 
to fi sh, in this case to barramundi ( Lates calcarifer ), a popular sport fi sh in Australia 
(Moody and Owens  1994 ). On just one occasion, BIV may have been associated 
with high mortality in hatchery-reared Nile tilapia fry in Australia (Ariel and Owens 
 1997 ). Although the authors did not genetically characterize the iridovirus, feeding 
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the moribund tilapia fry to barramundi fi ngerlings reproduced disease similar to 
what had been reported following challenge studies of barramundi to BIV (Moody 
and Owens  1994 ).  

3.6     Taxonomically Unassigned Ranaviruses That Affect Fish 

 Although ranaviruses infecting freshwater fi shes are relatively well characterized, 
less is known about the signifi cance of ranaviruses infecting cultured or feral popu-
lations of marine fi shes. Exceptions include two related ranaviruses, SGIV and GIV, 
which signifi cantly impact grouper mariculture in Asia (Chua et al.  1994 ; Murali 
et al.  2002 ; Qin et al.  2003 ). Phylogenetic analysis based on the 26 conserved irido-
virus genes demonstrated that GIV and SGIV are each other’s closest relatives; 
however, these viruses are genetically divergent from other ranaviruses (Eaton et al. 
 2007 ). Therefore, GIV/SGIV may need to be considered as a new genus within the 
family  Iridoviridae  (Jancovich et al.  2015 ). 

 SGIV was fi rst identifi ed following a mass mortality event of net-cage farmed 
brown-spotted grouper ( Epinephelus tauvina ) in Singapore in 1994 (Chua et al. 
 1994 ). The authors referred to the epizootic as Sleepy Grouper Disease; however, 
they failed to isolate or genetically characterize the virus. In 1998, the same dis-
ease was again observed in Singapore farms following imports of brown-spotted 
grouper fry from Taiwan (Qin et al.  2003 ). These authors genetically character-
ized the virus as a novel ranavirus, and named it SGIV (Qin et al.  2003 ). Similarly, 
GIV has negatively impacted production of yellow grouper ( Epinephelus awoara ) 
in Taiwan (Murali et al.  2002 ). Delivery of the virus to yellow grouper by injec-
tion resulted in 100 % mortality during experimental challenges (Murali et al. 
 2002 ). A recent study reported the isolation of SGIV and GIV strains from grou-
per and non-grouper species cultured in Taiwan (Huang et al.  2011 , Table  3 ). This 
study illustrates the apparent expanding host range of SGIV/GIV including the 
fi rst isolation of these viruses in freshwater (largemouth bass) and catadromous 
(barramundi) fi shes. 

 Other partially characterized ranaviruses from wild marine fi shes include cod 
ranavirus (CoIV) isolated from Danish Atlantic cod ( Gadus morhua ; Ariel et al. 
 2010 ) and the short-fi nned eel ranavirus (SERV) isolated from short-fi nned eel 
( Anguilla australis ) off the coast of New Zealand (Bang-Jensen et al.  2009 ). 
Ranaviruses isolated from seemingly healthy cultivated freshwater and marine 
fi shes include the pike-perch iridovirus (PPIV) isolated from Finnish pike-perch 
fi ngerlings (Tapiovaara et al.  1998 ) and Ranavirus maxima (Rmax) isolated from 
Danish turbot ( Scophthalmus maximus ) fry (Ariel et al.  2010 ). Preliminary phylo-
genetic analyses of these fi sh viruses have revealed they represent previously 
unknown ranaviruses, warranting more comprehensive study into their biology 
and potential impact on cultivated and wild populations (Holopainen et al.  2009 ; 
Jancovich et al.  2015 ).   
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4     Ranaviruses Infecting Reptiles 

 Although ranaviral disease has been described in reptiles in a number of cases, it is 
likely that these disease events are underreported (Daszak et al.  1999 ; Johnson et al. 
 2010 ; Allender  2012 ) due to lack of awareness, few long-term research studies, and 
lack of disease monitoring in biological studies. It is notable that reports of ranavi-
rus infections in reptiles have markedly accelerated over the past decade. The rising 
awareness of these viruses in chelonians as important infectious agents may have 
contributed to the high number of case reports in these species as well as increasing 
the awareness of these viruses as pathogens in reptiles in general (Shaver  2012 ). It 
has also been surmised that the global trade of reptiles and amphibians in combina-
tion with the wide host range of ranaviruses is contributing to its emergence (Stöhr 
et al.  2013a ). This is of signifi cant importance for wild and captive reptiles as well 
as amphibians and fi sh. 

 There is an increasing amount of information available on ranaviruses capable of 
infecting reptiles. The majority of ranaviruses detected in reptiles so far have been 
FV3-like (Huang et al.  2009 ; Allender et al.  2011 ). In addition, ECV-, BIV-, and 
CMTV-like viruses have been detected in several reptile species in captivity 
(Marschang et al.  2013 ; Stöhr et al.  2015 ). Characterization of these viruses has 
most often been based on partial MCP gene sequences, but additional sequence data 
are becoming available to help understand relationships between the ranaviruses 
found in reptiles. In the USA, only FV3-like viruses have been detected in reptiles 
so far, which is the most commonly reported ranavirus for anurans. In Europe, a 
wider range of ranavirus types has been described, including both FV3-like viruses 
as well as ECV, BIV, and CMTV representatives. A fully sequenced ranavirus from 
chelonians in Asia (soft-shelled turtle iridovirus, STIV) has been shown to be 
closely related to FV3 (Huang et al.  2009 ). 

4.1     History of Reptile Cases 

 In the 1980s, two cases of iridovirus infections in tortoises were described in 
Switzerland (Heldstab and Bestetti  1982 ; Müller et al.  1988 ). Due to the described 
clinical, histological, and electronmicroscopical fi ndings, these animals are believed 
to have been infected with a ranavirus and are therefore the fi rst documented cases 
of ranaviral infection and disease in reptiles. A low number of proven detections of 
ranavirus infection in reptiles were documented in captive and wild chelonians in 
the late 1990s (Table  4 ). The fi rst cases of ranavirus infections in reptiles from 
which data were available on the viral genome were from a box turtle ( Terrapene c. 
carolina ) and a tortoise ( Testudo horsfi eldii ) from North America. Both appeared to 
be FV3-like based on partial MCP gene sequences and restriction endonuclease 
analysis (Mao et al.  1997 ). No clinical information on those two chelonians was 
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published. Recently, there has been an increase in the number of reports and cases 
in chelonians worldwide, especially box turtles ( Terrapene  sp.) in the USA (De Voe 
et al.  2004 ; Allender et al.  2006 ; Johnson et al.  2008 ; Allender  2012 , Table  4 ). 
Although ranavirus detection in chelonians has been reported most frequently, 
detection of these viruses in lizards and snakes has been increasing, mostly from 
captive populations (Stöhr et al.  2013b ; Behncke et al.  2013 ; Marschang et al. 
 2013 ). The causes for increased detection of ranaviruses in wild and captive reptiles 
may include increased awareness or surveillance, improved testing methods, or 

actual emergence of the pathogen.   

4.2     Outbreaks in Chelonians 

 Adult chelonians have been more commonly reported to develop FV3-like infections 
than juveniles (Johnson  2006 ). However, recent surveillance in eastern box turtles 
demonstrated that juveniles are more likely to be FV3 positive (Allender  2012 ). 
Therefore, it is likely that susceptibility of chelonians to ranaviruses differs among 
developmental stages similar to amphibians (Haislip et al.  2011 ). Some outbreaks in 
box turtles have involved translocation events that congregate many individuals, 
resulting in high infection prevalence and death (Belzer and Seibert  2011 ; Farnsworth 
and Seigel  2013 ; Kimble et al.  2014 ). In a multiyear survey of box turtles in the 
USA, ranavirus prevalence has not been reported above 5 % in a population without 
abnormal mortality events (Allender et al.  2013 ). 

 Reports of single cases and outbreaks in reptiles so far have mainly involved box 
turtles within North America (De Voe et al.  2004 ; Allender et al.  2006 ; Johnson 
et al.  2008 ,  2010 ; Ruder et al.  2010 ; Allender  2012 ; Kimble et al.  2014 ). While 
eastern box turtles are primarily terrestrial, they have been shown to spend a consid-
erable amount of time in temporary ponds (Donaldson and Echternacht  2005 ), 
which may expose them to ranavirus through water or sympatric amphibians (Belzer 
and Seibert  2011 ; Currylow et al.  2014 ). Some studies have indicated that increased 
ranaviral mortality in box turtles may correlate with increased exposure to infected 
sympatric amphibians, possibly via predation on infected amphibians, exposure to 
water containing ranavirus shed by amphibians, or via hematophagous insects 
(Belzer and Seibert  2011 ; Kimble et al.  2014 ). A study of wild Eastern painted tur-
tles, an aquatic species, in Virginia, USA, reported infection prevalence of 4.8–
31.6 % in different ponds, with no apparent disease (Goodman et al.  2013 ). 

 Koch’s postulates have been fulfi lled for ranaviral disease in chelonians, includ-
ing box turtles. Experimental challenge with FV3-like isolates from either Burmese 
star tortoises ( Geochelone platynota ) or eastern box turtles has resulted in high 
mortality in red-eared sliders (Johnson et al.  2007 ; Allender  2012 ). Characteristic 
clinical signs of nasal discharge and oral plaques were seen, but were inconsistent 
among individuals. Mortality rate and the presence of clinical signs were observed 
to be signifi cantly greater in turtles exposed at 22 °C compared to 28 °C, with 
corresponding increased viral copy number and shorter median survival time at 
lower temperatures (Allender et al.  2013 ). 

A.L.J. Duffus et al.
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 In addition to the box turtle cases described above, several other reports of FV3- 
like infections have been seen in captive chelonians (Marschang et al.  1999 ; De Voe 
et al.  2004 ; Benetka et al.  2007 ; Johnson et al.  2008 ; Blahak and Uhlenbrok  2010 , 
Table  4 ). Ranavirus infections were described in two juvenile diseased Hermann’s 
tortoises ( Testudo hermanni ) in Germany using PCR. All seven animals in the affected 
group died with similar signs (Marschang et al.  1999 ). The associated virus was fi rst 
described as FV3-like, but has since been shown to be more closely related to CMTV 
(Stöhr et al.  2015 ). A leopard tortoise ( Stigmochelys  ( Geochelone )  pardalis pardalis ) 
with nasal discharge, stomatitis, and lethargy had concurrent ranavirus and herpes 
virus infection confi rmed by PCR (Benetka et al.  2007 ). Ranaviruses have also been 
detected in association with mortality events in captive Hermann’s tortoises, Egyptian 
tortoises ( T. kleinmanni ), and marginated tortoises ( T. marginata ) in Germany. 
Affected animals developed stomatitis as well as splenic necrosis, enteritis, hepatitis, 
pancreatitis, and dermatitis in some cases (Blahak and Uhlenbrok  2010 ). Analysis of 
the genomes of the viruses associated with these outbreaks (tortoise ranavirus 1 and 2, 
ToRV-1 and-2) shows that sequence analysis clusters them closely with FV3, while 
their genomic arrangement resembles that of CMTV (Stöhr et al.  2015 ). Captive 
farmed soft-shelled turtles in China developed “red neck disease” associated with a 
ranavirus (Chen et al.  1999 ). Soft shell turtle iridovirus was the fi rst reptilian ranavirus 
to be fully sequenced, demonstrating that it is FV3-like (Huang et al.  2009 ). 
Comparative studies of ranaviruses infecting chelonians have shown that both FV3- 
and CMTV-like strains occur, and that strains from different outbreaks differ from one 
another and are often more closely related to previously described amphibian ranavi-
ruses than to other reptile-derived ranaviruses (Stöhr et al.  2015 ). 

 The short- and long-term impacts of ranaviruses on chelonian populations are 
unknown. Population stability in the face of ranavirus outbreaks has been debated, 
particularly regarding vulnerable Eastern box turtles. Due to the low reproductive 
rate and long time to sexual maturation of these animals, loss of adult females 
due to this disease will likely lead to signifi cant population declines over time 
(Farnsworth and Seigel  2013 ).  

4.3     Outbreaks in Squamates 

 Until recently, ranaviruses were only rarely reported in squamate reptiles (snakes 
and lizards). The fi rst report of ranaviruses in these animals was in a group of ten 
juvenile green tree pythons ( Morelia  ( Chondropython )  viridis ) imported into 
Australia from Papua New Guinea with oral and hepatic lesions. A ranavirus that 
was 97 % homologous to FV3 was isolated from pooled necropsy tissues (Hyatt 
et al.  2002 ). An FV3-like ranavirus was isolated from several organs of a red blood 
python ( Python brongersmai ) with similar pathology imported into Germany from 
Indonesia. The isolated ranavirus was most closely related to TFV, originally 
described in China (Stöhr et al.  2015 ). A leaf-tailed gecko ( Uroplatus fi mbriatus ) 
died unexpectedly and was diagnosed with a BIV-like ranavirus infection 
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(Marschang et al.  2005 , Stöhr et al.  2015 ). In Portugal, a ranavirus was isolated 
from a wild-caught Iberian mountain lizard ( Lacerta monticola ) that did not show 
any clinical signs of disease. This isolate was closely related to FV3; a coinfection 
with erythrocytic necrosis virus was also found (Alves de Matos et al.  2011 ). In a 
study describing virological screening of samples from lizards (Stöhr et al.  2013b ), 
ranaviral infections were detected in fi ve species: brown anoles ( Anolis sagrei ), 
Asian glass lizards ( Dopasia gracilis ), green anoles ( Anolis carolinensis ), green 
iguanas ( Iguana iguana ), and a central bearded dragon ( Pogona vitticeps ). All of the 
infected lizards had skin lesions. Sequencing part of the MCP gene of each virus 
showed that the fi ve detected viruses were distinct from one another and were 98.4–
100 % identical to the corresponding portion of the FV3 genome. However, the 
ranavirus detected in the green iguana was 100 % identical to ECV, whereas the 
ranavirus found in the bearded dragon was identical to a ranavirus detected in tor-
toises in Germany (ToRV-1), which is most closely related to FV3 (Stöhr et al. 
 2015 ). Further analysis of the genomes of the isolated viruses demonstrated that the 
ranaviruses detected in anoles were closely related to FV3, whereas the isolate from 
the Asian glass lizard clustered phylogenetically to TFV (Stöhr et al.  2015 ). A rana-
virus was also detected in green striped tree dragons ( Japalura splendida ) imported 
from southwestern China via Florida into Germany during a mass mortality event. 
The ranavirus appeared to be closely related to FV3 (Behncke et al.  2013 ). During a 
study in Germany, different reptilian samples submitted for virological testing were 
screened for the presence of ranavirus, with an increasing number of infections 
detected from 2010 to 2013. Affected species included various chelonian and squa-
mate species (Table  4 ). Some of the detected ranaviruses were most closely related 
to ECV,  others clustered together with the previously detected ranaviruses in 
European amphibians or  reptiles, and one virus was FV3-like (A. Stöhr, unpub-
lished data). This increase in detection of ranaviruses in reptiles may refl ect either 
true emergence of these viruses in reptiles or increased surveillance. The genomic 
differences found in the viruses studied indicate that there is not a single strain of 
ranavirus that has adapted to reptiles as hosts, but rather that multiple transmissions 
of ranaviruses from amphibians and fi sh to reptiles may have taken place (Jancovich 
et al.  2010 ), and may continue to occur. Interestingly, studies have shown that within 
the legal international trade of reptiles, the largest numbers are traded through 
Europe and that these include both captive bred and wild-caught animals (Bush 
et al.  2013 ). The majority of reptile infections with genetically diverse ranaviruses 
have also been reported in Europe, often with a connection to the pet trade (Stöhr 
et al.  2013b ; Stöhr et al.  2015 ). The role of illegal trade in exotic pets for the epide-
miology of ranaviral infections in reptiles has not been studied, although there is 
some indication that this has played a role in ranaviral outbreaks in pet reptiles as 
well (S. Blahak, CVUA-OWL, personal communication). Wild-caught and farmed 
reptiles that are globally traded are often in contact with other animal species (rep-
tiles and amphibians), and are not regularly tested for the presence of infections. 
Another aspect of increased surveillance and reporting of ranaviral infections in 
reptiles is the increased fi nding of co-infections with other pathogens, making diag-
nosis of ranaviral disease in some cases diffi cult.   
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5     Interclass Transmission of Ranaviruses 

 Ranaviruses, as described above, are pathogens that affect a wide variety of hosts 
across three classes of ectothermic vertebrates (Amphibia, Reptilia, and 
Osteichthyes). It has long been suspected that interclass transmission of this group 
of viruses was possible, but it has only recently been demonstrated experimentally 
under controlled laboratory conditions (Brenes et al.  2014a ). Evidence exists that 
interclass transmission may occur in wild populations for at least BIV, ATV, and FV3. 

 The fi rst evidence for interclass transmission of ranaviruses was provided by Moody 
and Owens ( 1994 ). Barramundi ( Lates calcarifer ) were exposed to BIV, an isolate 
derived from amphibians, by water bath exposure or injection. The exposed fi sh devel-
oped disease and experienced 100 % mortality (Moody and Owens  1994 ). BIV has 
also successfully been transmitted to juvenile short-necked turtles ( Emydura macquarii 
krefftii ) and saw-shelled turtles ( Myuchelys  ( Elseya )  latisternum ), but adult turtles of 
the same species as well as juvenile crocodiles ( Crocodylus johnstoni ) were not suc-
cessfully infected. Transmission studies with three species of snakes (brown tree 
snakes,  Boiga irregularis , common green tree snakes,  Dendrelaphis punctulatus , and 
keelback snakes,  Tropidonophis  ( Amphiesma )  mairii ) did not induce disease in any of 
the animals, but BIV was reisolated from one of the brown tree snakes four weeks after 
inoculation (Ariel  1997 ). The isolation of BIV so long after initial infection without 
clinical signs suggests that this species may be a viable reservoir (Ariel  1997 ). 

 Although originally thought to be restricted to urodeles (Jancovich et al.  2001 ), 
ATV was later shown to be pathogenic to anurans (Schock et al.  2008 ). Experimental 
infection of largemouth bass was successful, but inoculated animals experienced no 
mortality or disease (Picco et al.  2010 ). There is also evidence that multiple FV3- 
like and ATV-like strains may circulate in ponds and may affect both urodeles and 
anurans (Schock et al.  2008 ). To date, no experimental infections of ATV in reptiles 
have been attempted. 

 An additional study by Bayley et al. ( 2013 ) has shown that a ranavirus originally 
isolated from fi sh (PPIV) is capable of causing mortality in common frog tadpoles. 
Common frog tadpoles were exposed to a panel of six fi sh-derived ranavirus isolates 
via water bath. However, only one of the six ranavirus isolates, PPIV, caused mortal-
ity. This was the fi rst case where exposure to a fi sh-derived isolate caused death in an 
amphibian. Subsequent experiments by Brenes et al. ( 2014a ) have shown transmis-
sion of an FV3-like isolate from fi sh to amphibians. 

 FV3-like viruses have been detected in fi sh, amphibians, and reptiles and there is 
evidence from wild populations, captive settings, and from experimental transmis-
sion studies that these viruses have a very wide host range. Mao et al. ( 1999a ) found 
identical ranavirus isolates from a threespine stickleback and a northern red-legged 
frog ( Rana aurora ) tadpole from the same area. FV3-like viruses have been isolated 
from moribund marbled sleeper gobies ( Oxyeleotris marmoratus ) cultivated in 
Thailand (Prasankok et al.  2005 ) and several hatchery-reared sturgeon species dur-
ing epizootics in the USA (Waltzek et al.  2014 ); however, the role of the virus in 
disease was only thoroughly studied and confi rmed in pallid sturgeon. 
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 Brenes et al. ( 2014a ) demonstrated water-bath transmission of an FV3-like virus, 
originally isolated from a moribund pallid sturgeon to amphibians (Cope’s gray 
treefrog,  Hyla chrysoscelis ), fi sh (mosquito fi sh) and reptiles (red-eared sliders). In 
a similar experiment, three chelonians (Florida soft-shelled turtle,  Apalone ferox ; 
eastern river cooters,  Pseudemys concinna ; Mississippi map turtles,  Graptemys 
pseudogeographica kohnii ) were assessed for susceptibility to the same FV3-like 
virus, an FV3-like isolate from an eastern box turtle and a third FV3-like isolate 
from an American bullfrog, from the USA (Brenes et al.  2014b ). While no disease 
or mortality was observed in these experiments, infections were documented in 
soft-shelled turtles that were exposed to the fi sh isolate and those that were exposed 
to the turtle isolate (Brenes et al.  2014b ). Infections were also observed in the 
Mississippi map turtles that were exposed to the turtle isolate (Brenes et al.  2014b ). 
These results demonstrate the possibility that reptiles, fi sh, and amphibians may act 
as reservoirs for FV3-like ranaviruses for other taxa. 

 The role of different host classes in the epidemiology of ranaviruses remains to be 
studied. A number of fi eld studies have indicated that ranavirus infections in one 
group of hosts can affect the health and survival of sympatric ectothermic vertebrates, 
but the role of various hosts as long-term carriers of virus and in the dynamics of 
transmission is yet unknown. The fact that several studies have shown that different 
viruses may have vastly different effects on various hosts is also important for the 
assessment of infection status in clinically healthy animals, both in the wild and in 
captivity, especially in trade. Healthy infected animals in which ranaviruses are not 
suspected could be a source of infection via direct contact or environmental contami-
nation for other susceptible species of other animal classes. All of these fi ndings 
underscore the need to reassess our understanding of ranaviruses as multispecies 
pathogens, not only as pathogens of specifi c groups of animals.  

6     Summary and Conclusions 

 Ranavirus infections in amphibians, fi sh, and reptiles are widespread and affect a 
diverse suite of species within these vertebrate classes (Table  1 , Fig.  6 ). The species 
affected include some that are economically important (e.g., rainbow trout, soft-
shelled turtle, bullfrogs), but also several that are of conservation concern (e.g., 
Chinese giant salamander, gopher tortoise, dusky gopher frog, pallid sturgeon). The 
economic and conservation risk of these multispecies pathogens is dependent 
upon many factors, including characteristics of the host species. One thing is 
certain – some host species are highly susceptible to ranavirus, and these species are 
most likely to be affected during outbreaks. Thus, understanding host susceptibility 
to different ranaviruses is key to quantifying risk. Host–pathogen interactions 
between ranaviruses and amphibians are the best characterized. Research in this 
area needs to continue, but there also needs to be greater attention on the role of 
reptiles and fi sh in ranavirus epizootic events. 
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 All three classes of vertebrate hosts are intensively farmed in different regions of 
the world. The conditions of captive culture facilities that often maintain high densi-
ties of genetically similar individuals may be conducive to repeated outbreaks of 
ranaviral disease (Pearman and Garner  2005 ; Fig.  6 ). Additionally, conditions that 
favor transmission can lead to increased virulence, according to the virulence trade-
off hypothesis (Alizon et al.  2009 ). Thus, captive facilities with recurring ranavirus 
outbreaks may facilitate evolution of ranavirus types that are more virulent than 
wild types (Brunner et al.  2015 ). 

  Fig. 6    Sites of ranavirus outbreaks include seemingly undisturbed sites, such as ( a ) Maine, USA 
(credit = Nathaniel Wheelwright) and ( b ) Dwingelderveld, Netherlands (credit = Jeiger Herder), ( c ) 
constructed ponds in urban environments (credit = Jeiger Herder), and ( d ) aquaculture facilities 
(credit = Rolando Mazzoni). High host density and environmental stressors likely contribute to 
outbreaks, especially in captive facilities (e.g., ( e ) bullfrog farm in Brazil; credit = Rolando 
Mazzoni). Some highly endangered species (e.g.,  Andrias davidianus ) have been affected ( f ), 
credit = Yi Geng       
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 The commercial trade of ranavirus hosts is likely a signifi cant factor facilitating 
the global distribution of ranaviruses, as well as interclass transmission of the patho-
gen. If novel strains of ranaviruses are introduced into naïve populations, experi-
mental evidence suggests that there could be devastating effects (e.g., Pearman et al. 
 2004 ; Storfer et al.  2007 ; Hoverman et al.  2010 ). With the trade in animals being 
truly global and ranaviruses accompanying them (e.g., Schloegel et al.  2009 ; Kolby 
et al.  2014 ), it is important to understand what ranaviruses are being transported and 
where they end up. 

 Understanding the geographical distribution and host range of ranaviruses is 
becoming increasingly important as the World Health Organization for Animals has 
declared that EHNV and ranaviruses that infect amphibians are “reportable infec-
tions of wildlife” (OIE  2008 ). This designation requires countries that have agreed to 
OIE policies to screen a sample of ranavirus hosts that are crossing international 
borders for the presence of ranaviruses (Schloegel et al.  2010 ). However, few coun-
tries have yet taken steps to implement import policies that require declaration of 
ranavirus-free animals. Moreover, infection of fi sh by ranaviruses (other than EHNV) 
and reptiles (for any ranavirus species) are not included in the OIE regulations. 

 We are just beginning to understand the distribution and host range of ranavi-
ruses. Continued surveillance of wild and captive populations, as well as, commer-
cially traded animals combined with the characterization of the ranavirus strains are 
necessary to fully understand the distribution and host diversity of ranaviruses. 
Therefore, when ranavirus studies are undertaken, suffi cient funding should be 
obtained to at least partially characterize the virus if detected. This approach will 
require that researchers work in interdisciplinary groups.   
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